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Abstract

Motion matching is an approach to generate character
animation in a controlled manner by blending and transi-
tioning between pre-recorded animation sequences multi-
ple times per second. It is widely used in the game indus-
try to generate more natural and dynamic animations that
respond to the character’s environment and input in real-
time. However, despite its popularity, there is no official
open-source implementation available and the primary in-
puts are limited, only keyboard or game controller. We be-
lieve that these methods are not immersive enough for the
players. In this project, we implemented a functional mo-
tion matching pipeline and introduced multiple alternative
input methods, including drawn trajectories and real-time
captured human poses, to enhance the immersive experi-
ence for video game players. Meanwhile, we did ablation
study to verify the effectiveness of several components in
our pipeline. You can find our project in this repo and our
demo videos on youtube.

1. Introduction

Motion matching serves as a straightforward yet power-
ful tool for character animation that align with a user’s com-
mand input, and is a widely-used motion generation tech-
nique in the game industry. Motivated by enabling users
to have an immersive experience when interacting with the
digital character, we want to go beyond normal keyboard
control and explore more interactive methods between digi-
tal characters’ animation and human actions. To initiate our
exploration here, we begin with motion matching. Our tar-
get is to enhance the immersive user experience within this
framework by investigating diverse input possibilities.

To be more specific, this project aims to develop a mo-
tion matching pipeline from scratch using the provided code
base. The initial focus is on implementing a responsive mo-
tion matching pipeline that effectively utilizes basic user in-
put, i.e. using keyboard, for controlling the digital charac-
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ter’s movements. Further exploration will involve incorpo-
rating additional input, like drawn trajectories and human
pose, to enhance the user’s immersive experience.

For the pipeline implementation, despite motion match-
ing being a well-established pipeline in the industry, there
is currently no official open-source implementation avail-
able. Thus, implementing the entire pipeline involves ad-
dressing numerous challenges and fine-tuning parameters
through trial and error.

For input diversity exploration, in addition to keyboard
control, we aspire to incorporate higher-level interactive in-
put to further enhance the user experience. Here, we focus
on the user’s own movement to create a mapping between
real-world human motion and digital character motion.

Finally, we integrate all our functionalities and create a
captivating video game-like demonstration.

In conclusion, our contributions include:

• Developed a traditional motion matching pipeline from
scratch within the provided code base, that can do
stand-still, dance, walk, sprint, jump, creep, etc. for
responsive animation of a general digital human skele-
ton.

• Explored various input possibilities to control the
skeleton human, including keyboard, drawn trajectory
and real-time captured poses.

• Created video game-like using experience.

2. Related Work
2.1. Motions in Video Games

In the game industry, numerous techniques are employed
for motion generation. In [20], the authors introduced the
utilization of motion capture in video games. This tech-
nique involves capturing the movements of real individuals
and employing the recorded data to animate digital charac-
ters. Typically, motion capture entails placing sensors on an
actor’s body and recording their movements while they per-
form various actions. Subsequently, the data is processed
by software to generate a digital representation of the actor’s
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motions. Presently, motion capture remains extensively em-
ployed in the game industry [12, 16, 21].

Motion capture is a powerful technique; however, its
drawback lies in the fact that it only captures fixed mo-
tions, resulting in limited scalability. Another technique,
known as procedural animation, can also be employed in
video games [6, 12]. This approach utilizes algorithms to
generate animations dynamically, without relying on pre-
recorded motion capture data. Procedural animation en-
ables the creation of more dynamic and diverse animations.
In contrast to motion capture, there exist various methods
for generating procedural animations [6, 8, 12, 18].

Due to the complex and stochastic nature of human mo-
tion, motion capture currently remains superior to other
methods for generating motions in video games [12], de-
spite its high memory and time requirements.

2.2. State Machine

In general, a state machine, specifically a finite state ma-
chine, is a computational model used to control the behavior
of a system [24]. It divides the system’s behavior into differ-
ent states and defines the transition conditions and actions
between states. Compared to a naive system that reacts to
inputs instantly, a state machine is able to handle collisions
between the current state and inputs and transition to a new
state in a controllable way [22].

In the game industry, state machines are commonly used
to control the behavior and actions of characters. Each
state represents a different behavior of the character, such
as standing, walking, running, attacking, etc. By defin-
ing transition conditions between states, character behavior
and reactions can be implemented and switched between
different states. Additionally, state machines can also be
used to manage the states and progress of game levels, with
each state representing a different state of the level, such as
preparation, gameplay, victory, failure, etc. [13].

Using state machines clarifies the relationships between
different states and behaviors, making it easier to extend
new logic. However, state machines also have their limita-
tions. Programmers have to predefine all the possible states
and transitions in advance. As the variety and number of
game characters increase, the complexity of the state ma-
chine can exponentially increase.

2.3. Motion Matching

Motion matching is a cutting-edge technique widely
used in the game industry for generating character motion.
The essence of motion matching is a simple yet powerful
idea: conducting a search within a motion capture dataset
to find the best match that aligns with the current context.

Since its initial introduction in [7], the motion matching
algorithm has undergone significant development, emerging
as a mature pipeline applicable to various usage scenarios.

Notably, it has found success in close character interactions
for fighting sports [11]. Moreover, motion synthesis has
extended beyond basic movements like walking or running,
encompassing complex actions such as parkour or climbing
[5].

To address issues of poor scalability and large memory
requirements inherent in the traditional motion matching
pipeline, an elegant solution called learned motion match-
ing [15] has been proposed. This innovative approach com-
bines the strengths of motion matching and neural networks
by replacing the main components of the motion match-
ing pipeline — projection, stepping, and decompression —
with three MLPs. This strategy effectively reduces mem-
ory usage and improves scalability without compromising
its original performance.

Despite the emergence of generative motion synthesis
models [17,23], motion matching continues to be a popular
choice in the industry, thanks to its notable advantages, in-
cluding flexibility, predictability, low processing time, and
high visual quality [15].

3. Method

3.1. LAFAN1 Motion Capture Dataset

The LAFAN1 Dataset from Ubisoft [12] was used as the
motion capture dataset in this project. The dataset consists
of a collection of 77 motion sequences captured from 5 sub-
jects, which was categorized into 15 themes such as walk-
ing, dancing, aiming, etc. There are 496,672 motion frames
in total , played at a frame rate of 30 frames per second. In
addition to the high quality of the motion capture data, it
is worth noting a few undocumented details for the sake of
completeness.

3.1.1 Euler Angle Order

In contrast to the distinctive Euler angle order ofZ → X →
Y found in typical BVH files [1], the BVH files included in
the LAFAN1 dataset follow a different but more canonical
order of Z → Y → X . This divergence must be considered
when parsing and loading the motion data to avoid erro-
neous poses. In order to handle both conventional BVH files
and those from LAFAN1, the order should be recorded dur-
ing parsing. The order is indicated by the labels of ∗rotation
where ∗={X,Y,Z} following the CHANNELS keyword. For
example, when loading LAFAN1, the joints’ relative rota-
tion quaternion were calculated as

qj = qz(ψ) ∗ qy(θ) ∗ qx(ϕ)

where q{x,y,z}(·) denotes the elementary rotation around
the corresponding axis.
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Figure 1. Pipeline of Our Motion Matching System. Our system takes three kinds of input, keyboard, drawing trajectories, and human
poses. When generating a query feature vector, we use the spring damper method to predict the future trajectory. During the search
process, we emphasize more on fitting the future trajectory. Once find the best match, we do inertialization for smooth transformation
between motions. The resulted pose information is then applied on the digital character as output.

3.1.2 Character Root Orientation

Another notable characteristic of the LAFAN dataset is that
it uses ŷ = [0 1 0] as the forward direction of the charac-
ter, as opposed to the x-axis convention. This is particularly
important when extracting feature vectors within the mo-
tion matching pipeline. Furthermore, note that the codebase
used in this project adopts a y-axis-upward world frame
convention. If not adapted, the x-axis of the root frame will
eventually point vertically, resulting in unstable forward di-
rection projected onto the ground.

3.2. Basic Motion Matching Pipeline

3.2.1 Overview

Our pipeline is illustrated in Fig. 1. The animation sys-
tem based on motion matching comprises three main com-
ponents: projection (motion matching search), stepping
(incrementing the frame index), and decompression (pose
lookup).

The system takes the current animation context and user
control query as input and generates continuous, natural an-
imation output. Initially, the raw user inputs are converted
into query features. During the projection phase, a best-fit
feature vector is obtained by performing a nearest neighbor
search in the matching database. The frame index corre-
sponding to the best fit replaces the current frame index,
serving as the starting point for the subsequent animation
sequence playback.

At each step, the index is advanced, and the associated
pose is retrieved from the animation database. This pose
is then applied to the controlled digital character, ensuring
smooth and synchronized animation.

3.2.2 Matching Database Construction

The matching database X = [x0,x1, ...,xn−1] contains
feature vectors of all frames in provided motion clips and
is used for best matched motion search.

The feature vector x is defined in a concise but represen-
tative way, describing the features to be matched. In more
detail, according to [15], x =

{
tt, td, f t, ḟ t, ḣt

}
∈ R27.

All the features need to be converted to the character’s
local coordinate frame. The derivation of local coordinate
frame is detailed in Eq.(1). Here, vfacing,vup,vside are the
coordinate axes of the character’s local frame, which are
then concatenated into Rlocal ∈ R3×3. Rroot represents
the character’s root orientation, with Rroot(:, 1) denoting its
second column.

vup = [0 1 0]
⊺

vfacing = −
Rroot(:, 1)− ⟨Rroot(:, 1),vup⟩ · vup

∥Rroot(:, 1)− ⟨Rroot(:, 1),vup⟩ · vup∥
vside = vfacing × vup

Rlocal = [vfacing vup vside]

(1)

tt ∈ R6 and td ∈ R6 encode trajectory information.
They store the 2D future trajectory positions projected on
the ground and future trajectory orientations for the future
20, 40, 60 frames respectively. They are calculated as Eq.(2)
shows, where m represents {20, 40, 60}. Below, t.x and t.z
denote the x and z coordinates of the vector t, respectively.

ttraw
m = RT

local ·
−−−−−−−−−−−−−−−−−−→
(prootPosNow,prootPosAfter-m)

ttm =
[
ttraw

m .x, ttraw
m .z

]
tdraw

m = RT
local · vrootVelAfter-m

tdm =

[
tdraw

m .x, tdraw
m .z

]∥∥∥[tdraw
m .x, tdraw

m .z
]∥∥∥

(2)
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The other features describe current animation context
and state. f t ∈ R6 and ḟ t ∈ R6 are two foot joint posi-
tions and velocities of the current frame respectively, while
ḣt ∈ R3 is the hip joint velocity. Their derivations are
shown in Eq.(3)

After organizing all feature vectors {xi}N−1
i=0 into the

matching database, each feature is normalized for magni-
tude integrity.

f tleft/right = RT
local ·

−−−−−−−−−−−−−−−−→
(prootPosNow,pfootPosNow)

ḟ tleft/right = RT
local · vfootVelNow

ḣt = RT
local · vhipVelNow

(3)

Extension for 3D Motion Matching. Before in [15], all
trajectory features were limited to 2D, which resulted in the
inability to account for motion occurring along the verti-
cal axis, such as jumping and creeping. To address this
limitation in our application, we have enhanced the tra-
jectory features to include 3D information. Consequently,
the updated feature vector, denoted as x, now consists of{
tt, td, f t, ḟ t, ḣt

}
∈ R33 with tt ∈ R9 and td ∈ R9. To

implement this enhancement, we have included the y com-
ponent when calculating trajectory features.

3.2.3 Trajectory Prediction

Every time we receive a new input, we want the character
to react smoothly to the change. Simple algorithms, such as
interpolating between the current position and target posi-
tions, can generate smooth trajectories by adding extra pa-
rameters to control the interpolation rate. However, they fail
in cases of fast changes, as the velocity on these trajectories
is discontinued [14].

Therefore, we utilize a spring-damper system to com-
pute the character’s future trajectories. First, let’s consider
Hooke’s Law as shown in Eq.(4).

F = −kx = ma⇒ a+
k

m
x = 0 (4)

x(t) = x0cos(ωt) +
v0
ω
sin(ωt), ω =

√
k

m
(5)

Here, a is the second derivative of x. By solving this equa-
tion, we got solution in Eq.(5). Suppose the solution is the
moving function of a game character on one dimension, we
will observe the character doing simple harmonic motion
around a point. To make it stop at the target point, we have
to add an extra force opposite to the velocity to make it stop
after a certain number of oscillations. Then Eq. (6) shows
the Hooke’s Law for damped spring. And −cv is the extra
force, where c is a parameter controlling the dampe level.

F = −kx− cv = ma⇒ a+
c

m
v +

k

m
x = 0 (6)

Solving Eq.(6), we get solution Eq.(7).

x(t) = est, s = −ω(ζ ±
√
ζ2 − 1) (7)

where ω =

√
k

m
, ζ =

c

2
√
km

(8)

When 0 ≤ ζ ≤ 1, the system is a underdamped spring;
ζ = 1 is the Critical Spring Damper and ζ > 1 is the over-
damped spring [14]. In games, we generally use critical
spring damper. The simplified solution is shown by Eq.(9),
which will stop at the target place without oscillating.

x(t) = (x0 + (v0 + ωx0)t)e
−ωt (9)

By further modify x and v in Eq.(6) into xgoal − x0 and
vgoal − v0, and solve again, we can get more general ex-
pressions Eq.(10).

x(t) = (j0 + j1t)e
−yt + c

c = xgoal +
d

vgoal

y =
d

2
j0 = x0 − c
j1 = v0 + j0y

(10)

d is a parameter to control the decaying rate. Instead of tar-
get position, we can only get target velocity from controller.
Therefore, x stands for character velocity and v stands for
acceleration. Using Eq.(11), we finally compute future tra-
jectory positions [14].

x(t) =

∫
(j0e

−yt + j1te
−yt + c)dt (11)

3.2.4 Best Motion Search - Weighted Loss

In [15], the best motion search is finding the index k in the
motion matching database that minimizes the squared Eu-
clidean distance to the query vector.

k∗ = argmin
k

∥x− xk∥2 (12)

In [15], the author claimed that the features in the query
vector do not need to be weighted. However, in our exper-
iments, we found that when the features are not weighted,
the matched animation does not agree with the user input.
To mitigate this issue, we place more weight on the pre-
dicted trajectory during the search process because it is gen-
erated based on the user input. In the search process, we
divide the feature vector into xtrajectory =

{
tt, td

}
and

xfeature =
{
f t, ḟ t, ḣt

}
. And we search for

k∗ = argmin
k

0.8 ∥xtrajectory − xk trajectory∥2

+0.2 ∥xfeature − xk feature∥2
(13)
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3.2.5 Inertialization

The inertialization technique [4] can be understood as a
quintic interpolation with specific constraints which aims to
interpolate motion between two poses, resembling physical
inertial.

Scalar Case Without loss of generality, the ending value
x1 at time t = t1 can be set to 0. Moreover x0 ⩾ 0 as it
corresponds to the norm of the difference vector between
positions. Given inputs x0, x1, t1, v0 where v0 is the esti-
mated initial velocity, we are seeking the interpolation with-
out overshoot:

x̃(t) = c5t
5 + c4t

4 + c3t
3 + c2t

2 + v0t+ x0 t ∈ [0, t1]

s.t. 0 < x(t) < x0 ∀t ∈ (0, t1)
(14)

The overshoot-free constraint leads to clamping of v0

v0 ← min{v0, 0} (15)

Assume the steady state at t = t1:

x̃(t), x̃′(t), x̃′′(t)|t=t1 = 0 (16)

yielding a solution of c5:3 in 14 parametrized by c2.

c5 = −c2t1
2 + 3v0t1 + 6x0

t1
5

c4 =
3c2t1

2 + 8v0t1 + 15x0
t1

4

c3 = −3c2t1
2 + 6v0t1 + 10x0

t1
3

(17)

Notice that c2 = 1/2a0 where a0 is the initial acceleration
in [4]. In order to find c2, we may set x̃′′′ = 0 at t = t1.
Substituting c5:3 in 14 with 17 yields:

c2 = −10x0 + 4t1v0
t1

2 (18)

Next, c2 and t1 were tuned to guarantee the overshoot-
free behavior. A second order constraint was imposed:

c2 ← min{c2, 0} (19)

Finally, the interpolation time t1 is verified so that no over-
shoot below 0 may occur. The concavity was realized by
placing the inflection point outside the interval. The result
can be derived as:

t1 ← min{t1,
5x0
|v0|
} (20)

which is indeed the result in [4]. As Eq.20 merely depends
on x0, v0, it can be imposed before proceeding with the cal-
culation.

Euclidean Vector Case Full dimensional quintic interpo-
lation in Euclidean space can be complicated [10]. As a
reasonable approximation, only the norm of the difference
between states was inertialized, i.e. x0 = ∥x0 − x1∥ while
the unit direction x̄01 = (x0 − x1)/∥x0 − x1∥ remained
constant during interpolation:

x̃(t) = x1 + x̃(t) · x̄01 (21)

The initial velocity v0 can be calculated by finite difference:

v0 ≈
x0− (x−1 − x1) · x̄01

∆t
(22)

Quaternion Case The direction and norm between
quaternions was defined by axis-angle representation. Since
q and −q represent the same rotation [3], the shortest rota-
tion must be selected:

q̃(t) = q (cos (α̃(t)/2), sin (α̃(t)/2)v01) ∗ q1
where α0 = Angle(q0 ∗ q−1

1 ), v01 = Axis(q0 ∗ q−1
1 )

and Angle(q) := 2 cos−1 (Re(q̄)),Axis(q) :=
Im(q̄)

∥Im(q̄)∥

q̄ = Reduce(q) :=

{
q if Re(q) ⩾ 0

−q otherwise
(23)

The initial velocity v0 can be estimated by the finite differ-
ence of the twist component around v01 [25]:

v0 ≈
α0 − 2 tan−1

(
Im(q−1∗q−1

1 )·v01

Re(q−1∗q−1
1 )

)
∆t

(24)

3.2.6 Accelerated Search with AABB Tree

As shown in [15], the time-consuming nearest neighbor
search can be accelerated with simple two-layer Axis-
Aligned Bounding Box (AABB), assuming similarities of
neighboring frames.

Fitting AABB Fitting an AABB to a set of geometry
objects set S including other AABBs is relatively sim-
ple. The lower/upper bound lb, ub are defined as lbi =
infx∈S xi, ubi = supx∈S xi. As stated in [15], a 2-layer
hierarchy comprising 16 and 64 consecutive frames is suffi-
cient.

Search the AABB Tree The distance between the query
point x̂ and an AABB provides a lower bound estimate for
that between x̂ and any object within that AABB:

min
x∈AABB

∥x−x̂∥ ⩾ distAABB(x) (25)
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Therefore whenever the distance against an AABB to be
searched is greater than the current lowest distance, no fur-
ther searching into this AABB will be needed. It can be
shown that dist(·) can be calculated in an efficient manner
thanks to the decoupled box constraints:

distAABB(x) =

D∑
i

(max{lbi − xi, 0, xi − ubi})2 (26)

3.3. Advanced Motions

3.3.1 3D Motion

In Section 3.2.2, we discussed the weakness of the feature
vector mentioned in [15] and introduced an updated feature
vector that includes the y component in the future trajectory.
However, we discovered that using only the updated feature
vector for motion matching resulted in improper matching
of the original 2D motions. To address this issue, we di-
vided the database into 2D and 3D motions. Whenever the
character performs a jump or creep, we switch from the 2D
database to the 3D database and conduct motion matching
within the 3D database. Once the motion is completed, we
switch back to the 2D database.

When creating the trajectory for jumping, the character’s
facing direction remains unchanged, and we only modify
the y component of the character velocity and goal velocity.
Firstly, we assign the character an upward y component ve-
locity, denoted as vy . Consequently, we set the y component
of the goal velocity to −vy . In 2D motions, we exclusively
utilize spring damper in the x and z directions. However, in
3D motions, we additionally employ spring damper in the y
direction to generate a smooth jumping trajectory.

When creeping, the character’s facing direction is con-
trolled by the user’s input direction. When creating the tra-
jectory for creeping, the goal velocity is always set to 0.8,
which closely approximates the average creeping speed in
the database. It is important to note that, for creeping, we do
not assign vy to the current speed and goal speed. Instead,
we set the height of the trajectory to 0.4, which is near the
average hip height of creeping in the database.

3.3.2 Fixed Animation

The fixed animation strategy is implemented to handle ac-
tions that pose challenges in generating smooth and natural
results through motion matching techniques. This approach
is particularly useful for stand-still and dance animations.

In the case of stand-still animation, when the projected
future velocity falls below a certain threshold and no input
is detected, motion matching is halted, and a pre-selected
stand-still animation is played. Once the animation clip
reaches its conclusion, the character maintains the position
from the last frame of the clip.

For the dancing animation, the initial frame is chosen
based on the motion matching result. Subsequently, motion
matching is temporarily paused, and the animation clip is
played starting from the matched frame. Upon completion
of the clip, another round of motion matching occurs, and
this process iterates as needed.

3.4. Input Diversity Exploration

3.4.1 Keyboard Input

The keyboard serves as the primary control medium for
human-computer interaction, making it an ideal starting
point for our exploration of input diversity.

In our system, we assign specific functions to various
keys to control the movement and actions of the digital char-
acter. The up and down arrow keys are utilized to adjust
the target speed value. The ”W, S, A, D” keys are respon-
sible for controlling the character’s movement in different
directions. Pressing the ”Shift” key enables the character to
sprint, while pressing ”J” triggers a jump action. The ”P”
key initiates a dance animation, and the ”C” key prompts
the character to creep.

These interaction commands are implemented within the
”keyPressed” and ”keyReleased” functions, allowing for
real-time response.

3.4.2 Drawn Trajectory Control

Keyboard is limited for direction control, which only has
8 fixed velociy directions. And the players have to keep
pressing keyboard to keep character moving. Sometimes
we may just want the character to follow specific route and
set our fingers free.

In the ”draw Trajectory” mode, we can use mouse to
paint on the ground. The painted lines are represented by se-
quences of dots, stored in ”hitPoints” variable. Once paint
a trajectory, keyboard control will be disabled, while you
can still press ”shift” to run. Then the character will follow
a straight line to the nearest dot on the trajectory, and start
following the whole trajectory. Once reaching the end, it
will go straight back to the start point and do another round.

3.4.3 Human Pose Control

To provide users with a more intuitive and immersive ex-
perience, we have also implemented human pose control,
which takes real-time human poses as input and enables
smooth control of the character.

We utilized FastPose [9] to capture human poses. For
the 13 motions, namely creep forward, creep left, creep
right, dance, jump, punch, run forward, run left, run right,
stand still, walk forward, walk left, and walk right, we pre-
recorded 13 videos as the reference for the corresponding
poses. Subsequently, for each video, we iterated through its
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Figure 2. Screenshots of Our Demos [2]. First row (left to right): walk, run, creep, dance; Second row (left to right): walk, run with
drawn trajectory, creep, jump in forest terrain. In the pictures, yellow arrow represents expected direction from input, blue dots are the
history trajectory and purple dots are the predicted future trajectory.

frames, and for each frame i, we concatenated the pose from
frame i to i+10 to create a labeled data point representing
the respective motion. This processing step also needs to be
performed for newly acquired data.

We employ a Python script to translate real-time human
poses into keyboard input for program control. When a new
pose is received, we apply a KNN classifier to assign a la-
bel to the pose. To prevent jittering, we maintain a record
of recent human pose labels and only utilize the most fre-
quently occurring label from the last five poses to trigger
the corresponding keyboard input.

4. Experiments
4.1. Demo

Our demos [2] feature diverse terrains, including basic
and forest environments. They showcase motion matching
based on selected action themes from LAFAN1 [12] data,
including Obstacles, Walk, Dance, Ground, Run, Jumps,
and Sprint. Fig.2 displays representative screenshots of the
demos. In our implemented application, the digital charac-
ter’s skeleton can be controlled via keyboard, drawn trajec-
tory, and pose control inputs, enabling actions like stand-
still, dance, walk, sprint, jump, and creep.

4.2. Ablation Study

4.2.1 Spring Damper

To smoothly transfer a variable from current value to target
value, the simplest way is to interpolate in between. By
controlling the interpolation rate, we can make it converge
faster or slower. However, when new input comes in, target
value changes instantly, which results in the discontinuity
of first derivative [14], and applying interpolation here is
inappropriate. On the other, spring damper uses cos based

functions, which make it infinitely differentiable. So we get
smooth trajectories, in a physical-alike manner, which helps
to match more natural motions. The effectiveness of spring
damper is shown vividly in Fig.3

Figure 3. Trajectory Comparison. Spring damper generates
smoother and more physical-alike trajectories, than interpolation
does.

4.2.2 Weighted Loss

We compared motion matching before and after adding
weights to the loss function. With more weights put on fu-
ture trajectory, the character is able to focus on the red line
and walk in a straight line as shown in Fig.4. While for un-
weighted loss, character is more likely to do matching based
on behavior similarity, and ignore the moving direction.

4.2.3 Inertialization

Fig.5 demonstrates the difference between with and with-
out inertialization. Without inertialization, pose switches
are abrupt, resulting in odd behaviors. In contrast, inertial-
ization generates smooth transformations by interpolating
between current and matched poses, providing a seamless
motion transition.
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Figure 4. Original Loss (Upper) and weighted Loss (Lower).
Character with weighted loss walk straightly to the left, while
character with original loss cannot follow strictly to our control
given left command.

Figure 5. Without Inertialization (Left) and with Inertializa-
tion (Right). Character with Inertialization makes smoother trans-
formation between motions as shown in the smoother history tra-
jectory colored as blue, which also results in matching more natu-
ral behaviors.

4.3. Failure Cases

Including noisy data in the matching database can lead
to motion matching failures. Specifically, when attempt-
ing the creeping motion and incorporating additional creep-
ing data from the LAFAN1 dataset, the character initially
creeps correctly. However, after a few frames, the char-
acter’s creeping movement becomes uncontrollable, even
when continuously pressing the ’C’ key. To regain con-
trol over the character’s creeping, the ’C’ key needs to be
released and pressed again.

Additionally, the pose classifier’s failure can result in in-
accurate motion matching. For example, distinguishing be-
tween ”run right” and ”walk right” actions poses a chal-
lenge to the kNN classifier, causing undesired jittering be-
tween the two motions. Besides, the absence of training
data for action transitions also leads to unstable classifica-
tion results during pose transitions, such as from ’dance’ to
’jump’. Although attempts were made to improve the clas-
sifier’s performance using a basic MLP, the limited training
data and incomplete settings resulted in overfitting, making
it ineffective for test videos.

5. Conclusion
In this project, we implemented a motion matching

pipeline in C++ by building upon the provided codebase.
The pipeline effectively integrates inputs from keyboard,
drawn trajectory, and human pose, and produces responsive
and smooth animation.

In the current stage, we formulate the interaction model
between the human pose and digital character in the ap-
plication as a straightforward classification problem. The
available poses for controlling humans are predefined and
limited. An optimal setup would involve mapping the ac-
tions performed by the human to the character. However,
achieving this requires advanced techniques such as precise
human pose detection and retargeting, which go beyond the
scope of this project. Besides, the motion matching method
has certain limitations. Firstly, it cannot generate motions
that do not exist in the database. Additionally, parameter
tuning is necessary to achieve smooth matching, and simple
feature vectors may not be sufficient for complex behav-
iors. To address the limitations mentioned earlier, a promis-
ing solution is to combine the emerging generative models
with the traditional motion matching pipeline, such as that
described in [19]. This integration allows us to harness the
strengths of both approaches, enhancing motion generation
and expanding the capabilities of the motion matching pro-
cess.

6. Contributions of Team Members
The workload of this project was distributed evenly

among us. The table below highlights the assigned tasks
and responsibilities of all team members.

Task Members

1. Motion Matching: Databa-
se Construction

Guo Han

2. Motion Matching: Trajec-
tory Prediction

Boxiang Rong

3. Motion Matching: Inertial-
ization, AABB Search

Hang Yin

4. Motion Matching: Various
Actions

Longteng Duan, Guo Han,
Boxiang Rong

5. Motion Matching: Codebase
Adaption and General Pipeline

All group members

6. Trajectory Control Longteng Duan, Boxiang
Rong

7. Human Pose Control Longteng Duan, Guo Han,
Boxiang Rong

8. Terrain Construction Boxiang Rong

Table 1. Work split of team members.
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