
Rendering Trees in Augmented Reality

Marius Debussche∗ David Kamm∗ Adrien Lanne∗ Boxiang Rong∗

ETH Zürich
{mdebussche, kammd, alanne, borong}@student.ethz.ch

Abstract

Augmented reality devices provide urban designers and
architects with a tool for visualizing their drafts. In the field
of biophilic design, this technology for placing virtual trees
into real-world environments improves the designing pro-
cess. While focusing on the realistic rendering of trees, the
limiting factor is computational resources. With the use of
billboards and 3D mesh representation of the tree model
combined with textures used for albedo, normal, specular
and animation, we were able to reduce memory storage.

Further, we focused on the interactive aspect of the ap-
plication. The user should be able to intuitively plant and
interact with the trees.

1. Introduction

Rendering and animating trees in a virtual scene is a
well-known task for game design. Using augmented reality,
we can use these virtual objects in the fields of architecture
and biophilic design. Enabling the user to test drafts of their
design in a real-world scene would improve the decision-
making process by providing the user with a visualization
and better intuition for composition. Therefore, our interest
lies in the realism of the rendering and the interactivity of
placing the objects.

The difficulty of this task lies within the trade-off be-
tween the realism of the trees and the computational re-
sources of the augmented reality device used. The more
realistic the representation should be, the more memory and
computational power are needed. We therefore decided on
the following approach:

• Billboard and 3D mesh representation of the trees

• Albedo, normal and specular textures for improved vi-
sualization

• Tree branch animation for wind simulation

*These authors contributed equally to this work

Figure 1. Screenshots of running program. The first row shows
the start menu, tree selection, and ray-casing-based tree planting.
The second row shows the bounding-box modification, hand ma-
nipulation and close-up view.

• Pre-captured environment map for lighting conditions
in the scene

• UI design for interactively planting the trees

• Plane reconstruction for ground attachment

With the combination of billboards and 3D meshes, we
could reduce the memory used by a model using textures to
store albedos, normals, and specular colors. Animating the
tree branches improves the realism of the object and its in-
clusion in the outdoor scene. Furthermore, the scene’s illu-
mination can be approximated using a sampled environment
map under the assumption that the light conditions outdoors
would be the same for the whole scene.

To improve the interaction between the user and the ap-
plication, we design a UI and provide a planting method
for placing the trees on the ground. Our implementation is
based on the Unity Engine and specifically designed for the
augmented reality device MagicLeap using MRTK [6].

1



2. Related Work
2.1. Object representation

For rendering realistic images, Physically Based Render-
ing (PBR) has become the standard nowadays, as it allows
to approximate the visuals of highly detailed surfaces us-
ing coarser meshes, and textures which are fast to sample
thanks to the GPU’s hardware linear interpolation.

For vegetation and specifically the trees, it is impossible
to model the whole foliage as it is dense and complex. To
create an illusion of volume, billboard are commonly used,
which maintains the triangle count low, as done in [2].

Finally, Unity’s framework provides various tools that
facilitate the development of real-time 3D applications,
such as Shader Graph, a graphical interface that can be used
to design fragment and vertex shaders.

2.2. Animation

Multiple methods are commonly used to create anima-
tions. For characters, skeleton animation is typically used
[4], and could be adapted to trees. On the other hand, for
simpler techniques that use procedural animation, it is more
common to see noise-based approaches, such as what is
done in God Of War [3].

2.3. Lighting

The final challenge is the lighting of the trees. It’s neces-
sary to have some form of approximation of global illumi-
nation to reach somewhat realistic images. For the time be-
ing, it’s impossible to compute the exact global illumination
in real-time using ray tracing, but it’s possible to do approx-
imations using light probes [5]. This approach only works if
we have information about the whole scene though, which
is not the case in Augmented Reality. Instead, we have to
use the device’s camera to approximate the environment,
which is done in [7], but this is a highly complex technique
that does not run in real-time yet.

A simpler idea is to use environment maps. They capture
the light coming from all directions at a given point, and
can be used to light the scene. This technique is widely
used in video games to improve the lighting because of its
simplicity, low cost, and acceptable results.

3. Rendering of the trees
To achieve the purpose of the application of giving a

good enough sense of the presence of trees when virtu-
ally planting them, a sufficiently high realism of their look
has to be attained when rendering them. Dozens of tech-
niques exist that improve how realistic a virtual object looks
while still being rendered in real-time. Among those are
albedo texturing, normal maps, specular maps, shadows,
environment maps, animation, ambient occlusion, translu-
cency, displacement maps, etc... For rendering our trees, we

used a subset of those techniques using the tools provided
by the Unity Engine.

3.1. Models

Trees are not simple uniform flat geometric shapes. They
are composed of thousands of leaves, an intricate branch
system, non-homogeneous bark, etc... As such, all those
characteristics must be specified in a way that allows for
coherent and harmonious results when rendered, which is
the work of artists. The content of those models is part of
the elements that determine the rendering techniques that
we can use for rendering trees. For example, we can only
use displacement maps for rendering the trunks of the trees
if one is provided for every tree trunk used in our applica-
tion. Also, the quality of this content highly impacts the
quality of the final look of the rendering, and sets a limit to
how realistic the trees can look, regardless of the efforts put
on our part.

Not having talented artists in our team, we had to rely on
existing models found on the internet. Finding sufficiently
high quality models to use proved to be quite challenging
as the datasets we searched in were composed of free mod-
els. Eventually, we found decent ones that provided a com-
plex enough base mesh, texture, normal maps and specular
maps.

3.2. Render pipeline

The render pipeline is a combination of techniques used
to transform the data contained in the models, and addi-
tional inputs such as camera position and orientation, into
a final image. Different parts of a model can have different
pipelines and which one is used for a given part is spec-
ified through a material description that encapsulates the
pipeline, the textures, and eventually other settings. The
Unity Engine already provides a default rendering pipeline
for that suits most of the needs in rendering photorealis-
tic trees. Customizing this rendering pipeline allows us to
adapt it for specific needs or add more advanced effects and
is made possible using the Unity Shader Graph tool that
gives control over some parts of the pipeline: the vertex and
fragment shaders. Typically, the fragment shader is where
the different textures are used to compute the final look of
the model.

For rendering trees, mainly two types of materials are
needed: one for the trunk, and one for the leaves. Both use
albedo texture 2a describing the color of the material, nor-
mal maps 2b specifying the direction of the surface normal
at each point of the material, which is needed for light com-
putation, and specular maps 2c giving the amount of light
reflected. Those are set up by linking the textures to the
corresponding slot in the corresponding material.

Since the trunk material describes a classic opaque ob-
ject with a closed boundary, it does not need further special

2



(a) Albedo texture. (b) Normal map. (c) Specular map.

Figure 2. Textures used for the rendering branches.

handling, but that is not the case for the leaf material as it is
rendered using billboards.

As those are transparent quads using an opaque texture,
we have to make the material able to handle transparency,
which is made by enabling alpha clipping in the settings of
the corresponding pipeline. Generally, to allow for trans-
parency, we use the transparent material setting, which uses
the alpha channel of the texture and alpha blending to mix
the resulting color of the object with the resulting color of
the background behind the object. However, alpha blend-
ing is not commutative respectively to the order in which of
multiple transparent objects are rendered, and creates in our
case a lot of artifacts in the final image. Alpha clipping does
not allow a continuous level of transparency but can handle
as many transparent objects one behind another as desired.

Billboard quads need also to be rendered on both sides,
which by default is not the case. This is enabled easily with
the corresponding pipeline setting, however, further care is
needed for an accurate rendering: the normal map that de-
scribes the direction the material is facing at any given point
becomes inaccurate for the backface: we need to account
for this by inverting the component of the normal map that
is along the normal to the quad.

3.3. Environment Map

One difficulty of rendering trees lies within the task of
illumination. The virtual object should be affected by real-
world lighting conditions and fit into the scene’s global il-
lumination. Since we are using an augmented reality de-
vice, we do not have the global illumination data of the
whole scene and thus have no further information about
light source positions and light directions. We have to ap-
proximate the illumination for a virtual object in a real-
world scene.

In an outdoor scene, we observed that the most signifi-
cant light sources would be consistent over the whole scene,
e.g. the sky and the ground reflection. This assumption

would help us to reduce the memory needed to store the il-
lumination. If we sample the global illumination at a single
position, we could approximate the light conditions for the
whole scene.

To store this global illumination sample, we capture an
environment map and store it as a cubemap. A cubemap
consists of six images, one for each side. Each image cap-
tures the view in a specific direction and provides us with
the corresponding illumination information. This again re-
duces the storage memory needed to only six images.

During the rendering process, to sample the global illu-
mination, a ray from the viewer to the surface is reflected
and a sample is received at the intersection point with the
cubemap.

3.4. Animation

Animation is crucial for the realism of a tree, leaves and
branches swaying make a tree feel a lot more integrated
in its environment. There are multiple ways to animate
a mesh, and we first thought of skeleton-driven deforma-
tion [4]. However, this approach is unnecessarily complex
for our application, as it would require rigging every tree
and designing animations for each one. In comparison, the
technique used in God Of War [3] is cheaper, and easier to
use for every tree, and the results look convincing. This
technique is based on Perlin noise 4a (a type of gradient
noise that is often used in real-time computer graphics to
increase realism) that is scaled by a weight value 4c that en-
codes the distance from the attach point of the branch to the
tree. It is then applied to the billboard vertices where the
texture 4b is rendered. The following computation is done
in the vertex shader:

vworld = v̂world + d ∗ s ∗ w ∗ (noise(d ∗ v̂world, t)− 0.5)

where vworld (resp. v̂world) is the vertex coordinate in
world space after (resp. before) deformation. The wind pa-

3



Figure 3. Rendering steps.

rameters are the wind strength s, wind direction d, and wind
density d. In practice, this is done in Unity using Shader
Graph.

4. User Interface

User interfaces are crucial for giving good user experi-
ences and efficiency. In the field of architectural design and
landscape planning, urban planners, the main target user
group of this project, usually decorate large volumes of trees
in big open areas. With this consideration, we designed a
working pipeline that is user-friendly enough and realizes
efficient tree planting. Our pipeline has four steps: plane
reconstruction, tree planting, bounding-box-based modifi-
cation, and ground attachment. We provide detailed expla-
nations of each step in the following sections. Additionally,
we will distinguish between two modes of tree planting.

4.1. Plane recontruction

MagicLeap integrates sensor data over time from multi-
ple viewpoints. The device incorporates built-in features
known as ”world reconstruction” [1] to continually track
its 3D position and reconstruct the environment in real-
time. We extract the planar regions, using them as collision
surfaces to plant trees. For optimal reconstruction results,
it’s recommended to scan objects within a distance ranging
from 40cm to 5m, and a static environment is preferable.
We observed that reconstructions may contain gaps or inac-

curate geometry when dealing with outdoor settings or en-
vironments characterized by constant changes. Since world
reconstruction relies highly on accurate head tracking, pose
drift can occur more often in larger scale, darker, or low-
texture environments, which results in large holes and badly
reconstructed meshes.

4.2. Tree planting

Once starts the program, selection windows appear.
Users can press the trigger to achieve selection. We provide
2 types of trees for selection, mesh-based low-poly trees and
billboard-based trees, and we have 4 models for each type of
tree. Once users have made their selection, they can initiate
tree planting by employing ray-casting from the controller.
Specifically, the controller emits a straight line, which in-
dicates the controller direction, and the point of intersec-
tion on the reconstructed planes and object. Then, users can
press ”Trigger” to instantiate a new tree and press ”Bumper”
to remove a tree.

4.3. Bounding box modification

We leveraged the bounding box feature from MRTK [6]
to modify the size and orientation of trees. Click once on
the tree model to activate the bounding box, we can drag
the cubic-shaped handles to achieve scaling and rotating in
a user-friendly manner. During this procedure, hands can
serve as a replacement for the controller, enhancing the in-
teractive experience for users. However, box handles usu-
ally become too small when the model grows too big or is
located in the distance, which makes it hard for users to se-
lect each handle. In this case, users can use the touchpad
to move objects inward and outward, and rotate easily. See
instructions in Fig. 6.

4.4. Ground attachment

Typically, the intention is to have trees planted directly
on the ground. However, after modifications, manually
aligning the model with the ground surface can be impracti-
cal. To address this, we provide a feature that automatically
attaches trees to the ground, shown in Fig. 5. By holding the
”Trigger”, users can drag and place models. In this process,
we keep tracking the distance between the lowest point on
the model and the ground surface, where a green anchor ball
is placed on the ground to help locate the position. When
this distance is lower than a threshold, the anchor ball will
turn white, which means it’s ready to get attached. Then,
release the trigger, the model will automatically be attached
to the ground.

4.5. Two Modes

In ”Manual Modification” mode, a tree object will be
instantiated directly after selection. Users have the flexibil-
ity to adjust its scale, orientation, and translation using a

4



(a) 2D Perlin noise image. (b) Branch texture. (c) Deformation weights.

Figure 4. Textures used in the noise based animation.

Figure 5. Tree Planting Workflow. (a) Once start the program, the surrounding environment is reconstructed from MagicLeap captured 3d
information. (b) Using ”Ray-caseting Mode”, users can plant trees at the intersection point on the floor. (c) After activating bounding-box
manipulation, users can adjust model size and orientation. (d) Models get attached to the ground automatically when the distance is lower
than a threshold.

Figure 6. Touchpad Instructions. Finger touches in the front and
back area, will change the translation of selected models, moving
it outward and inward. Finger touches in the left and right area,
will change the rotation of selected models, in counterclockwise
and clockwise directions.

bounding box. One has to open the menu again and select
to instantiate another tree. In ”Ray-casting Based Planting”
mode, users not only retain the capabilities of the first mode,
but they can also instantiate and delete trees using the con-
troller ray, which largely facilitates the planting process.

5. User study

The ultimate goal of this product is to enable users with
efficient tools to decorate large volumes of realistic trees in
big open areas. To assess the effectiveness of our product,

we conduct a user study encompassing both quantitative and
qualitative measurements. We focus on evaluating planting
efficiency, tree realism, and product usability.

5.1. Settings

Before user study, each user has to watch an instruction
video and play around with the device to get familiar with
the operations. Then, they are asked to do a planting ex-
periment, in which the time cost is recorded as the quanti-
tative assessment (See section 5.2). Finally, they will finish
a questionnaire with 7 questions, as the qualitative assess-
ment (See section 5.3):

1. Rate our ”User Guidance” (0 to 10).

2. Which parts do you think need more instructions? (A.
planting tree by ray casting; B. mode changing; C.
bounding box manipulation; D. attach tree to ground)

3. Rate the realism of the billboard tree (0 to 10).

4. Rate the realism of the low-poly tree (0 to 10).

5. In which parts, do you think it can be more realistic?
(A. appearance of leaves; B. animation of leaves; C.
appearance of truck, branches; D. light condition; E.
shadow; F. sound)

6. What do you think this App can be used in your
work/life? (describe the possible usage)

5



Figure 7. Ablation Study. Each candidate is asked to plant the 7
trees at specific locations using both ”Manual Modification” and
”Ray-casting Mode”.

7. Will you consider using this in your work/life?
(Yes/No)

5.2. Ablation Study

As mentioned in section 4.5, we provide two modes for
tree planting. In ”Manual Modification”, users have to re-
open the menu every time to instantiate each model. Based
on that, the ”Ray-casting mode” is designed with a ray-cast
feature to facilitate fast planting. To validate the effect of
this design, we experimented with 12 users. In the exper-
iment, users have to finish two tasks and the time cost for
each task is measured.

1. Using ”Ray-casting Mode”, plant 7 trees on the
ground, and there should be at least 2 different types.

2. Using ”manual Modification”, plant the same 7 trees
at the same location.

The quantitative results are depicted in Fig. 7. We
have observed substantial variations in the time cost for
each user, likely stemming from differences in proficiency
in product usage. Despite this, all cases prove that ”Ray-
casting Mode” largely accelerates the tree planting process.

5.3. Results

Looking into the qualitative results, almost everyone (11
in 12 people) rated our user guidance as clean and easy
to follow, which guarantees the validity of the ablation
study. When comparing the two types of trees, all candi-
dates think ”billboard-based trees” are more realistic than
low-poly mesh trees, which confirms to our expectations. In
practice, for real-time operation, it is feasible to plant over
14 billboard-based trees, whereas the device has a maxi-
mum capacity of holding only 4 complex mesh-based trees.
Therefore, we can tell that billboard-based trees achieve
better realism and cheaper computations.

For the product’s usability, answers from 12 candidates
can be categorized into three groups: Interior Design and

Gardening Planning, Games and movie creation, and room
decoration for mental health and relaxation. Majorities of
people (66%) think highly of the future potential of this
product, and express their willingness to use it in their daily
lives.

6. Conclusion
While rendering in real-time trees that achieve a cor-

rect amount of realism, our application allows for intuitive
placement and manipulation of those trees by the user. Lim-
itations however are present in terms of interactivity as the
maximum performance of the device is quickly reached and
only a small set of trees can be rendered at once, and in
terms of realism as the trees do not look realistic when seen
from up close and are integrated in their environment only
through the environment map (they do not shed shadows in
the real world, nor contribute to the global lighting).

To go further, more complex rendering techniques such
as leaf translucency, displacement maps, light source char-
acteristics estimation from the environment map, or differ-
ent levels of detail for performance could be impleted. UI
wise, allowing trees to be placed in specific patterns, mak-
ing the capture of the environment map automatic, or con-
necting the app to a bank of high quality tree models could
make the application more complete.

References
[1] Magicleap developer portal, April 21, 2020. https://

ml1-developer.magicleap.com/en-us/learn/
guides/developer-portal. 4

[2] Alberto Candussi, Nicola Candussi, and Tobias Höllerer. Ren-
dering realistic trees and forests in real time. Proc. Eurograph-
ics 2005, 01 2005. 2

[3] GDC. Interactive wind and vegetation in ’god of war’, Jan.
2000. 2, 3

[4] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose Space De-
formation: A Unified Approach to Shape Interpolation and
Skeleton-Driven Deformation. Association for Computing
Machinery, New York, NY, USA, 1 edition, 2023. 2, 3

[5] Morgan McGuire, Mike Mara, Derek Nowrouzezahrai, and
David Luebke. Real-time global illumination using precom-
puted light field probes. In Proceedings of the 21st ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games,
I3D ’17, New York, NY, USA, 2017. Association for Comput-
ing Machinery. 2

[6] Microsoft. Mixed Reality Toolkit 3, 2023. https://
learn.microsoft.com/en-us/windows/mixed-
reality/mrtk-unity/mrtk3-overview/. 1, 4

[7] Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei
Jia, and Xiaowei Zhou. Modeling indirect illumination for
inverse rendering. In CVPR, 2022. 2

6

https://ml1-developer.magicleap.com/en-us/learn/guides/developer-portal
https://ml1-developer.magicleap.com/en-us/learn/guides/developer-portal
https://ml1-developer.magicleap.com/en-us/learn/guides/developer-portal
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-overview/
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-overview/
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-overview/

	. Introduction
	. Related Work
	. Object representation
	. Animation
	. Lighting

	. Rendering of the trees
	. Models
	. Render pipeline
	. Environment Map
	. Animation

	. User Interface
	. Plane recontruction
	. Tree planting
	. Bounding box modification
	. Ground attachment
	. Two Modes

	. User study
	. Settings
	. Ablation Study
	. Results

	. Conclusion

