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ETH Zürich

shimin@ethz.ch

Abstract

Motion blur happens with fast head-camera movement
and long exposure times. In this project, we proposed to
reconstruct the indoor environment in advance and render
clear images to replace blurry camera views to achieve
the goal of image stabilization. We used four pipelines,
including traditional reconstruction and NeRF-based ones
(Depth-Supervised NeRF, Deblur NeRF, Instant NGP). Ex-
periments were done on three scenes to test the stabiliz-
ing performance and analyze the pros and cons of each
pipeline. We also proposed adding camera motion infor-
mation to Deblur NeRF for better deblurring and verified
the performance of our modification.

1. Introduction
With its huge application potential in various fields, Aug-

mented Reality (AR) has been gaining increasingly greater
public attention. However, there are currently various issues
regarding this technology. One of which is motion blur:
During fast head movements, the scenes captured by the
camera on AR devices tend to be blurry[17]. In addition,
the current processing capacity of AR devices cannot sup-
port producing high-quality 3D reconstructions on a real-
time basis. Therefore, a pre-built model would be desirable
to compensate for these blurry images during runtime.

For this project, we aim to create a pipeline for generat-
ing offline scene representations for indoor scenery. Using
the volumetric rendering technique, the pre-created scene
representations could be used as a supplement when an AR
camera device experiences fast movement. In this case, the
representation provides an online-render result of the cur-
rent scene given the camera pose, so the otherwise blurry
images could be replaced by clear scene captures.

Given its ability to represent complicated environments,
Neural Radiance Field (NeRF)[12] has been widely used
in reconstructing 3D objects. We attempted to reconstruct
the scene in both traditional ways and NeRF-based meth-
ods. For the traditional explicit method, a point cloud of the
scene is created using RGB-D images. The cloud is then

smoothed into a mesh representation. For the implicit meth-
ods, we created implicit scene reconstructions by adapting
three proposed NeRF methods and then analyzing their ac-
curacy, efficacy, and usability.

2. Related work

2.1. Non-NeRF-Based Methods

Point cloud reconstruction has many applications, such
as 3D architectural modeling[9], terrestrial surveying[3],
simultaneous Localization and Mapping (SLAM) for au-
tonomous vehicles, etc. One approach to point cloud re-
construction is Structure from Motion (SFM)[5] algorithms,
which looks for corresponding points among overlapping
images using SIFT descriptor[10] and recovers both 3d co-
ordinates and camera poses. COLMAP[15, 16] is a re-
construction pipeline utilizing Structure-from-Motion and
Multi-View Stereo that takes in images and outputs scene
reconstructions. Moreover, if depth maps are available,
one can directly project points into 3d space and gen-
erates a dense point cloud using OPEN3D[22]. In our
project, based on dense point-cloud, we further use Poisson
reconstruction[6] to recover mesh and then use color map
optimization[21] to improve the texture mapping.

2.2. NeRF Based Methods

In recent years, NeRF has emerged as a prominent
method for encoding 3D scene representations using neu-
ral networks. While the original NeRF framework achieved
remarkable results in novel-view synthesis, several recent
developments have aimed to address its limitations and en-
hance its capabilities. PixelNeRF[20] introduces a learning
framework that incorporates spatial image features aligned
to each pixel. MetaNeRF[18] focuses on meta-learning,
aiming to reconstruct novel scenes with only a few input
images. MVS-NeRF[2] leverages multi-view stereo (MVS)
techniques to improve the reconstruction quality of NeRF.
NeRF with depth prior[4, 14] addresses the challenge of
insufficient views by leveraging depth information from
images and camera poses, significantly reducing the re-
quired number of viewing angles for reliable reconstruc-



tion. Deblur-NeRF[11] tackles the issues of motion blur
and image noise by training an additional deformable sparse
kernel on top of the NeRF framework, resulting in con-
vincing reconstructions of scenes with blurry images. In-
stant NGP[13] efficiently encodes the 3d feature vectors of
scenes using a multi-resolution hash table and greatly accel-
erates the training speed of NeRF. DP-NeRF[8] focuses on
mitigating view-dependent effects in NeRF reconstructions,
leveraging a differentiable projection module to achieve su-
perior results. These recent advancements collectively con-
tribute to expanding the capabilities and improving the per-
formance of NeRF-based methods, enabling more accurate
and detailed 3D scene reconstructions.

3. Methodology

To generate offline scene representations of the indoor
environment, we use both explicit and implicit modeling
methods. The explicit method stands for traditional point
cloud and mesh reconstruction, while the implicit ones are
NeRF-based methods, which encode information inside the
MLP networks. Once the scene is reconstructed, we input
the camera pose and render clear views during run-time.

Figure 1: Overview of pipelines. The HoloLens captured
data is fed into two streams of methods, explicit and implicit
reconstruction, to build environment models. The pre-build
models will render clear images to replace blurry camera
images.

3.1. Color Map Optimization

Compared with learning-based methods, traditional re-
construction algorithms require much less computing re-
sources and is faster to build simple scenes with few-shot
images. The pipeline is shown in Fig 2.

Our Room dataset is captured by HoloLens, which uses
two devices to capture RGB and depth images with different
resolutions asynchronously. Therefore, we first prepossess
depth information by cropping and interpolating to align
each clear RGB with a corresponding depth map. After that,
we use the paired RGB-D to build point clouds for each im-
age. Then, stitching all point clouds together and applying
Poisson surface[6] reconstruction, we get the room model
represented by a mesh. Finally, clear images are selected as

Figure 2: Traditional reconstruction pipeline. Upon stitch-
ing multiple point clouds, Poisson surface reconstruction is
used to recover mesh for the whole room given clear RGB-
D images. Finally, use color map optimization to refine the
color on the mesh.

input to color map optimization[21], which will generate a
room model with fine-painted color.

To add more technical details, each image in the dataset
has a timestamp. When aligning depth to RGB, images
with the nearest timestamps will be paired to generate an
RGB-D file. Since depth map resolution is way lower than
RGB’s, we use nearest-neighbor interpolation to get dense
and smooth depth distribution. Meanwhile, we select only a
small portion of images to reconstruct, and for stitched point
clouds, we need to filter noisy points. However, the filtering
process requires heavy parameter engineering, and surfaces
with complex structures are always badly recovered.

3.2. Depth-Supervised NeRF

The main advantage of Depth-supervised NeRF (DS-
NeRF) is that it leverages both the training images and
the depth prior of the rendered points, resulting in a NeRF
model that learns the underlying scene geometry with much
larger accuracy. We use two losses defined in the original
DS NeRF paper[4]. These two losses are combined through
a pre-defined weight λD: l = lcolor +λDlDepth. Where the
depth loss:

ldepth = Exi∈Xj

∑
k
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Here, for a ray r(t) = o + t ∗ d, The ray distribution,
which denotes the likelihood the ray ends at time t, is char-
acterized by h(t) = σ(t) ∗ exp(−

∫ t

0
σ(s)ds) with σ as the

density function. Xj is the set of all points in the point
cloud that is visible in view j. For each point i and associ-
ated camera view j, the depth distribution is estimated by a
normal distribution: Dij ∼ N(Dij , σi).

The main pipeline of DS NeRF is shown in Fig 3.
All training images are fed into the Structure-from-Motion



(SFM) application called COLMAP, which generates a
point cloud of the scene and the estimated camera poses
of each image view.

Figure 3: Pipeline of Depth-Supervised NeRF. SFM
pipeline is applied to the RGB images to create a point
cloud, which will be projected onto each image afterward
to generate its sparse depth map. Both the depth map and
the RGB image are fed for training

Then, the depth map of each scene is mapped onto its
RGB image to form its depth map and error. This informa-
tion is fed together into DS-NeRF, resulting in an implicit
scene representation that is also able to generate reliable
depth information.

Due to the complicated nature of the test scenes, we also
fine-tuned the parameters of the feature extraction process
in SFM, so we could capture more features by making the
feature detection more sensitive to edges and color varia-
tions, thus adapting the feature matching (otherwise suit-
able for a small number of contiguous training images) to
the large and complicated data sets.

We also attempted to convert the monocular depth map
generated by HoloLens into our training depth. However,
due to the incompatibility of the coordination systems of
the provided pose, the resulting dataset could not train DS
NeRF in good quality.

3.3. Deblur NeRF

NeRF-based pipelines can be easily affected by blurry
images, which requires manually filtering blurry data. How-
ever, Deblur NeRF can recover a clear scene from only
blurry images by adding a ’deformable’ kernel[11]. The
pipeline of Deblur-NeRF is shown in Fig 4.

During training, each ray will be optimized into several
rays through a deformable kernel. The optimization process
is described by Eq. 2.

(∆q, ωq) = Gϕ(p, q
′, l), where q′ ∈ N ′(p) (2)

q = q′ +∆q (3)

bp =
∑

q∈N (p)

ωqcq, w.r.t
∑

q∈N (p)

ωq = 1 (4)

Here, N ′(p) is the predefined kernel, with fixed position
shift; l is the view embedding for distinguishing different

views, and Gϕ is the MLP block which outputs position
shift ∆q and weights ωq for each optimized rays.

Then, each optimized ray q, going through the NeRF
block, gets a color value cq , which will then be mixed to
produce a blurry image. In other words, the forward process
simulates how blur is produced, with ground truth being
the actual blurry images to supervise training. After that,
the deformable kernel will be discarded during testing, and
only basic NeRF will produce a clear scene. Meanwhile, an
align loss is designed to ensure the optimized rays are sam-
pled around the input ray. More details can be referred to in
the original Deblur-NeRF paper[11].

Motivated by the fact that motion blur usually follows
a specific blurry pattern, which is aligned with camera
movement[1], we proposed to add trajectory information to
supervise the training of the deformable kernel based on the
aforementioned Deblur NeRF. We can easily acquire trajec-
tory information from the dataset by computing the transla-
tion and rotation between continuous frames. In our case,
we use the velocity vector (3 values) and quaternions (4
values) to represent the camera’s motion and encode them
into high-dimensional vectors. Finally, initialize the view
embedding with encoded velocity and quaternions. Experi-
mental results are shown in 4.4.1.

3.4. Instant NGP

For the Instant Neural Graphics Primitives (Instant
NGP)[13], we used the standard framework to train our
dataset on the model. We applied the recommended scale
and lighting settings of the dataset, and we pre-processed
our dataset prior to training to fit the prerequisites of the
model. We modified several hyperparameters of the NeRF
model within the framework, including color activation
units (from Sigmoid to ReLU), total loss calculation (from
Huber to L2), and density activation units (from exponential
to ReLU).

4. Experiments
4.1. Datasets

Our dataset is gathered from a previous Mix Reality
course project[7]. It consists of two video recordings of two
different room scenes captured using Hololens2. Each cap-
ture contains thousands of RGB video frames in 1280×720,
monocular depth frames in a lower capturing frequency, the
intrinsic parameters of the camera, and the corresponding
camera poses and timestamp for each RGB frame. For the
first capture, the HoloLens has a relatively slow movement,
which results in a dataset containing less motion blur. This
dataset is used for the main scene experiments as well as
Instant-NGP parameterization testing. The second capture
contains more motion blur and is used for experiments for
Deblur-NeRF modifications and ablation studies.



Figure 4: Deblur NeRF pipeline. When training, for input ray, the position, view embedding, and predefined kernel offset are
fed in MLP to generate multiple optimized rays. Colors of all optimized rays will be mixed to recover ground truth(blurry
image). Our modification replaced view embedding with trajectory information. Only NeRF will be used when testing.

4.2. Main testing scenes

We conducted three experiments on subsets of the more
detailed room dataset. First, the poster scene contains di-
verse and intricate variations in its colors but not many vari-
ations in its depth. Then, the bookshelf contains a complex
depth distribution, as well as a somewhat diverse RGB vari-
ation. Last, the whole room1, with a much larger spatial
extent than the other two scenes, is rendered 2.

4.3. Results

The results can be found in table 1.Fig 5 shows a side-
to-side comparison of each method and the ground truth on
scenes poster and bookshelf. Videos of the whole room
can be found here 3.

In the poster scene, color details are generally well
preserved for Color Map Optimization, Depth-Supervised
NeRF, and Deblur NeRF. We can still well observe the
”TROPHY” characters on the poster. However, explicit
mesh reconstruction is found to be badly influenced by the
noisy point clouds, especially in the bookshelf scene, due
to its large depth variance. Considering the time and com-
puting resources, the traditional reconstruction is still more
convenient for simple and plain scenes.

DS NeRF generally gets better performance in the Book-
shelf and Poster scene than others. Both DS NeRF and
Deblur-NeRF have a greater capability in reconstructing
complicated scenes, despite the slow inference speed com-
pared to Instant-NGP and Color map optimization. For all
scenes, Deblur NeRF actually generates the clearest image
among all pipelines but doesn’t get high scores when eval-
uated by metrics. We will discuss the analysis of that in the
next section.

1For the whole room, each method is not trained/tested on the exact
same images, but they all come from the same scene.

2To train DS NeRF on the room scene, we removed images with little
texture to guarantee a more stable feature matching.

3YouTube Video of Room Scene https://youtube.com/
playlist?list=PLUffCQyBEYtbOQg4-66ZrcuNmsX0OXVKv

Poster MSE PSNR SSIM LPIPS

ColorMap Opt. 0.099 16.195 0.546 0.383
Instant NGP 0.048 19.532 0.688 0.526

DS NeRF 0.009 26.950 0.813 0.247
Deblur-NeRF 0.034 23.172 0.730 0.316

Bookshelf MSE PSNR SSIM LPIPS

ColorMap Opt. 0.159 14.119 0.422 0.480
Instant NGP 0.033 20.402 0.661 0.423

DS NeRF 0.021 23.106 0.709 0.344
Deblur-NeRF 0.052 19.322 0.630 0.335

Room MSE PSNR SSIM LPIPS

ColorMap Opt. 0.110 16.426 0.484 0.393
Instant NGP 0.028 21.585 0.690 0.405

DS NeRF 0.028 21.879 0.637 0.456
Deblur-NeRF 0.057 19.614 0.621 0.361

Table 1: View generation: We applied all four methods to
each of the three scenes.

4.4. Extended Experiments

4.4.1 Trajectory + Deblur NeRF

In Fig.6, we compared the rendering quality of Deblur-
NeRF before and after adding embedded trajectory infor-
mation. The modified Deblur-NeRF seems to overfit on the
training set and performs badly on the test set. We also
tried to normalize trajectory embedding, but it’s not work-
ing. One possible direction is that instead of directly us-
ing trajectory as an embedding, we can use it to design a
deformable kernel for each view, following the simulation

https://youtube.com/playlist?list=PLUffCQyBEYtbOQg4-66ZrcuNmsX0OXVKv
https://youtube.com/playlist?list=PLUffCQyBEYtbOQg4-66ZrcuNmsX0OXVKv


Figure 5: Comparing the rendering quality of each method on the scenes Poster and bookshelf. The ground truth images are
shown on the top left.

process in computer graphics[1].

Figure 6: PSNR of training and testing. The model overfit
the training set after using the trajectory embeddings.

4.4.2 Few-shot Scene Reconstruction

Depth information is known to be able to reduce the train-
ing burden on the number of images. We investigated its
validity in the context of our project. We reduced the num-
ber of training images for the poster scene from 33 to 7.
As shown in table 2, the reconstruction quality of DS NeRF
is much better than Deblur-NeRF in all metrics. In a word,
DS NeRF only needs a few pictures for training and can still
clearly reconstruct the scene when data is limited.

Poster MSE PSNR SSIM LPIPS

DS NeRF 0.207 13.224 0.382 0.599
Deblur-NeRF 0.018 24.324 0.782 0.248

Table 2: Few-shot training: a comparison between DS-
NeRF and Deblur-NeRF

4.4.3 Shifted outputs of Deblur-NeRF

To find out why clear outputs of Deblur NeRF get a lower
metrics value, we calculated the channel difference between

ground truth and output images. It is found that Deblur
NeRF generates a slightly shifted image, shown by the bold
edges in Fig. 7. However, when only blurry images are
available, Deblur NeRF is still the best choice to recover
clear ones. We show its ability to correct blurry images in
Fig. 8.

(a) Depth-Supervised NeRF (b) Deblur NeRF

Figure 7: Channel difference between the ground truth and
the output of DS NeRF and Deblur NeRF. The darker the
image of channel difference, the closer the original image
to the g.t. is.

Figure 8: Comparison between training set image(left), and
output image from trained Deblur NeRF(right)

4.4.4 Different Instant NGP Training Setting

We tried different training settings of Instant NGP to an-
alyze how different Instant-NGP parameterizations (ReLU
RGB Activation, L2 Total Loss, and ReLU Density Activa-
tion) could affect the results. The results, shown in table 3,
evidence a preference for L2 total loss.



Poster PSNR SSIM LPIPS

ReLU RGB Activation 15.647 0.643 0.484
L2 Total Loss 21.258 0.679 0.425

ReLU Density Activation 16.183 0.628 0.482

Table 3: Comparison of different Instant-NGP parametriza-
tions

5. Discussion
NeRF-based methods have demonstrated high-quality

reconstruction capabilities in indoor environments. Un-
like traditional explicit methods such as point clouds and
mesh, NeRF’s continuous implicit representation model en-
ables clear and smooth view synthesis with adaptable accu-
racy and the ability to learn novel views. Explicit methods
remain more cost-effective and faster, although they may
struggle with complex surface conditions.

The Depth-Supervised NeRF leverages the depth maps
to provide an assumed depth prior for each 3D point during
training, so it needs fewer images than other methods to
train an average representation and has a more precise depth
map in rendering views. Since the features inside the room
have many occlusions and depth cliffs, the DS NeRF has an
advantage in learning these kinds of scenes.

The Deblur-NeRF, which aims to train a representation
given blurry images, has shown its ability to reduce the blur
and obtain a good, blurry-free representation. Combined
with the pre-deformable kernel and the motion embedding
of the camera, Deblur-NeRF can learn the movement direc-
tion that causes the blur and reproduce a clear scene.

The Instant NGP pipeline is performed as a baseline for
NeRF-based methods. It adds a HASH table to the original
NeRF to speed up the rendering. As the experiment result
shows, the original NeRF has a limited ability to reconstruct
room scenes and will produce a lot of artifacts.

5.1. Future Scope

For future works, one direction is to combine DS-NeRF
and Deblur NeRF, which show great capabilities in recon-
structing complicated scenes given limited and blurry train-
ing images. We can also add the HASH table designed in
the Instant NGP for faster rendering, which may make it
possible to integrate the run-time rendering of the implicit
model into the AR device itself.

Another direction is to predict blur patterns with trajec-
tory information in a computer graphics manner. We can
directly use the poses to calculate the exact motion of the
camera and use that to design the deformable kernels.

We can also try to add a Fourier embedding[19] to the
NeRF to let the network learn more high-frequency features

of the scene.

5.2. Limitation

Our proposed pipelines also have several limitations.
The Instant NGP pipeline, compared with other pipelines,
is featured in fast training speed but can not recover clear
scenes after the same iterations of training. For the Deblur-
NeRF, although it can deblur by using a deformable ker-
nel, this kernel also produces slight shifting and blending of
the view synthesis, which causes the decrease of its testing
PSNR. But anyway, the deblur NeRF did render the clearest
images to the human eye. In DS NeRF, we tried to use the
monocular depth map to train the model, but it failed due to
the mismatch of the provided poses’ coordinate system and
the camera’s coordinate system.

6. Conclusion

In this project, we built several pipelines to reconstruct
the indoor environment and render clear images. Through
the NeRF-based pipeline, we can collect data and train the
representation offline. During high-speed movements in
run-time, we can replace the blurry image with the render-
ing image from the representation, thus achieving the sta-
bility of the head-on camera.

6.1. Work split and Modifications

Work split is shown in table 4. We carry out experiments
with different methods. We built a traditional pipeline from
scratch while inheriting the existing datasets from the pre-
vious project group. Based on the original DS NeRF, we
modified the data loader and tried using both COLMAP and
monocular depth maps as the depth supervision. We add
trajectory information to the Deblur NeRF for training. For
the Instant NGP, we run it using the whole dataset and use
it as the baseline of the implicit method set.

TASKS Members

Literature study, Results analysis All Members
Explicit Reconstruction and Color
Map Optimization

Boxiang Rong

SFM and DS NeRF training with
sparse depth prior

Zilong Deng, Ziyao Shang

DS NeRF training with monocular
depth map

Zilong Deng, Ziyao Shang

Deblur NeRF dataloader and exper-
iments

Boxiang Rong

Trajectory Deblur implementation
and experiments

Boxiang Rong

Instant NGP experiments Minjing Shi

Table 4: Work split of team members.
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